24. Quantum Mechanics VI: Time-dependent Schrödinger Equation

24. Quantum Mechanics VI: Time-dependent Schrödinger Equation Tube. Duration : 74.32 Mins.



Fundamentals of Physics, II (PHYS 201) The time-dependent Schrödinger Equation is introduced as a powerful analog of Newton's second law of motion that describes quantum dynamics. It is shown how given an initial wave function, one can predict the future behavior using Schrödinger's Equation. The special role of stationary states (states of definite energy) is discussed. 00:00 - Chapter 1. The "Theory of Nearly Everything" 12:34 - Chapter 2. The time-dependent Schrodinger Equation 40:15 - Chapter 3. Stationary States Complete course materials are available at the Open Yale Courses website: open.yale.edu This course was recorded in Spring 2010.

Tags: Schrödinger Equation, quantum dynamics


0 comments to "24. Quantum Mechanics VI: Time-dependent Schrödinger Equation"

Post a Comment











Web hosting for webmasters